
tandem

GOTERO EN LÍNEA NO COMPENSANTE COEXTRUSO

Tecnología en Sistemas de Riego

Gotero en línea no compensante coextruso

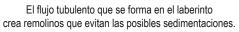
El gotero en línea TANDEM™ es el resultado de años de investigación y experiencia SIPLAST.

Realizado con un tubo de polietileno con gotero incorporado en la fase de extrusión es fiable y versátil.

Los controles efectuados en la fase de producción del gotero en línea respetan las normas del sistema de calidad SIPLAST ISO 9001 y garantiza la eficiencia de prestaciones del producto.

SIBERLINE MEXICO, ha incorporado a su linea de fabricacíon la experiencia y tecnología de SIBERLINE S.A. y de SIPLAST.

	16 mr	n
as	Ø (mm)	16
stic	Espesor nominal (mm)	1,15
características	Caudal nominal (Vh)	1,5
act	Presión de ejercicio (m c.a.)	de 10 a 30
car	Ecuación de flujo	Q = 0,405H ^{0,567}
as	Ø (mm)	16
características	Espesor nominal (mm)	1,15
erís	Caudal nominal (Vh)	2,1
act	Presión de ejercicio (m c.a.)	de 10 a 30
car	Ecuación de flujo	Q = 0,690H ^{0,495}
as	Ø (mm)	16
características	Espesor nominal (mm)	1,15
erís	Caudal nominal (Vh)	4,0
act	Presión de ejercicio (m c.a.)	de 10 a 30
ä	Ecuación de flujo	Q = 1,317H ^{0,487}


	0 mm	
20	~. \	0
20	Ø (mm)	ä
1,15	Espesor nominal (mm)	act
1,8	Caudal nominal (I/h)	en
de 10 a 30	Presión de ejercicio (m c.a.)	características
Q = 0,559H ^{0,516}	Ecuación de flujo	äs
20	Ø (mm)	ca
1,15	Espesor nominal (mm)	rac
2,2	Caudal nominal (I/h)	caracteristicas
de 10 a 30	Presión de ejercicio (m c.a.)	Stic
Q = 0,801H ^{0,486}	Ecuación de flujo	as
20	Ø (mm)	ca
1,15	Espesor nominal (mm)	rac
3,8	Caudal nominal (I/h)	caracteristicas
de 10 a 30	Presión de ejercicio (m c.a.)	Stic
Q = 1,201H ^{0,481}	Ecuación de flujo	cas

Q= caudal (l/h) H= presíon de ejercicio del gotero (m c.a.)

Características Tecnológicas

- El gotero de régimen turbulento (autolimpiante) evita la formación de sedimentaciones en el interior del laberinto.
- El gotero cuenta con un filtro de entrada que reduce considerablemente el riesgo de obstrucción debido a la utilización de aguas de baja calidad.
- Los dos puntos de goteo en cada extremo del gotero permiten una rápida y fácil instalación sin necesidad de verificar la posición del punto de emisión v aseguran el vaciado de las tuberías al terminar el ciclo de riego.

Campo de aplicacíon:

El gotero en línea TANDEM™ se utiliza con éxito:

- En cultivos de hortalizas y flores.
- En invernaderos y en campo abierto.
- En terrenos llanos o con pequeños desniveles.
- En ciclos de riego con fertirrigación.
- En instalaciones mecanizadas

La actividad de investigación y desarrollo tendiente al continuo perfeccionamiento de las prestaciones, ha permitido la realización de TANDEM™ que se carateriza por los cuatro puntos de emision.

Las ventajas de esta innovación tecnológica son:

- El aumento de la superficie mojada, con una reducción de percolación.
- La posibilidad de instalar líneas con espaciamientos mayores (más económicas) pero con el mismo rendimiento en términos de caudal y superficie regada, obteniendo además mayores longuitudes de línea.

Tandem[™], longitud aconsejada de las líneas en metros, para variaciones porcentuales de la pendiente S y del caudal V, con una presión de ejercicio de 10 m c.a.

Espaciamiento (cm)										
Caudal	S (%)	V (%)	20	30	40	50	60	75	100	150
1,5 l/h	2	10 15 20	41 50 58	51 64 76	59 75 89	65 84 100	69 90 109	74 98 119	79 107 131	84 116 145
	0	10 15 20	50 60 68	70 83 94	87 103 118	103 122 139	118 140 159	139 164 187	170 201 230	225 267 304
	-2	10 15 20	59 68 76	84 97 109	108 124 139	131 150 168	153 175 195	186 212 236	237 268 298	119 370 409
	-4	10 15 20	63 73 81	94 106 119	123 139 154	96 168 187	57 195 215	53 236 258	51 298 182	50 409 108
2,1 l/h	2	10 15 20	36 43 50	46 57 66	55 68 79	61 77 90	66 84 100	73 93 111	80 105 126	88 118 145
	0	10 15 20	42 49 56	58 68 78	72 85 97	85 101 115	98 115 131	115 136 154	141 166 189	186 220 251
	-2	10 15 20	46 54 61	68 78 87	85 99 111	105 121 134	121 139 156	145 166 186	186 212 236	263 297 229
	-4	10 15 20	51 58 65	73 84 93	96 109 112	116 131 146	137 155 172	100 187 207	65 239 263	59 98 361
	2	10 15 20	26 31 35	34 41 47	41 50 57	46 57 66	51 64 74	58 72 84	66 83 98	76 99 118
4,0 l/h	0	10 15 20	28 33 38	39 46 72	49 58 65	58 68 77	66 78 89	77 91 104	95 112 128	126 148 169
	-2	10 15 20	31 36 40	43 50 56	55 64 72	67 78 87	76 88 99	93 107 120	117 134 150	163 186 208
	-4	10 15 20	33 38 42	47 54 60	60 69 77	73 83 93	87 99 110	103 117 130	131 148 165	75 208 230

S= Pendiente del terreno en porcentaje (-bajada +subida) V= Variacíon en porcentuales de pendiente

Tandem™, longitud aconsejada de las líneas en metros en terreno llano en función de la uniformidad de emisíon (E.U. %)

Espaciamiento (cm)										
Caudal	Presion	E.U. (%)	20	30	40	50	60	75	100	150
1,5 l/h	10 m.c.a.	95 90 85	37 68 87	52 95 121	65 119 151	77 141 179	88 162 205	104 191 242	129 235 298	171 321 397
2,1 l/h	10 m.c.a.	95 90 85	30 55 69	42 77 97	53 97 121	64 115 145	73 132 166	86 156 195	106 192 241	141 256 321
4,0 l/h	10 m.c.a.	95 90 85	20 37 46	29 51 65	36 65 81	43 77 96	49 88 111	57 105 130	71 128 161	94 171 214

Los valores de las tablas han sido calculados con la ecuación KELLER - KARMELI (1975)

 $E.U. = 100 \left(1-1.27 \frac{CV}{\sqrt{n}}\right) \frac{Q_{\text{min}}}{Q_{\text{med}}}$

 $\begin{array}{ll} \text{CV} &= 0.03 \text{ coeficiente de variación tecnológica} \\ \textbf{n} &= \text{número de goteros por planta} \\ \textbf{Q}_{\text{min}} &= \text{caudal minimo (lph)} \\ \textbf{Q}_{\text{med}} &= \text{caudal medio (lph)} \end{array}$

Para un alto nivel de uniformidad de emisión en cada punto de la instalación se aconseja utilizar valores de E.U. Mayores o iguales al 90%

Tandem[™], longitud aconsejada de las líneas en metros, para variaciones porcentuales de la pendiente S y del caudal V, con una presión de ejercicio de 10 m c.a.

Espaciamiento (cm)										
Caudal	S (%)	V (%)	20	30	40	50	60	75	100	150
1,8 l/h	2	10 15 20	54 68 79	66 84 100	74 96 115	79 105 127	83 111 136	87 118 145	91 125 156	94 132 166
	0	10 15 20	72 86 98	100 118 134	124 147 167	146 173 197	167 198 225	196 232 264	239 283 323	315 273 426
	-2	10 15 20	87 100 112	126 144 161	164 186 207	194 221 247	228 259 288	273 310 344	138 398 440	116 212 592
	-4	10 15 20	96 109 121	140 159 176	66 205 227	60 134 274	58 99 317	56 90 144	55 85 122	54 83 114
2,2 l/h	2	10 15 20	49 60 79	61 77 90	70 89 105	76 98 117	81 106 127	86 114 138	91 123 151	96 133 166
	0	10 15 20	61 73 82	85 100 114	105 124 141	124 146 167	141 167 190	166 196 223	203 240 273	267 316 360
	-2	10 15 20	73 84 94	104 119 133	133 152 170	160 183 204	187 213 237	227 257 286	288 326 361	138 448 495
	-4	10 15 20	79 90 101	116 132 146	148 167 186	78 204 226	67 239 263	62 117 316	60 97 171	59 91 129
	2	10 15 20	40 49 57	52 64 74	60 75 88	67 85 100	72 92 109	78 101 121	85 112 136	93 125 154
3,8 l/h	0	10 15 20	48 57 64	66 78 89	82 97 110	97 115 130	111 131 149	130 153 174	159 187 213	209 247 281
	-2	10 15 20	54 63 71	77 89 100	100 115 129	119 137 159	142 162 180	170 194 216	212 241 269	301 399 375
	-4	10 15 20	59 68 76	87 99 110	112 127 141	134 152 169	159 180 199	74 217 240	64 150 299	61 98 161

S= Pendiente del terreno en porcentaje (-bajada +subida) V= Variacíon en porcentuales de pendiente

Tandem[™], longitud aconsejada de las líneas en metros en terreno llano en función de la uniformidad de emisíon (E.U. %)

Espaciamiento (cm)										
Caudal	Presion	E.U. (%)	20	30	40	50	60	75	100	150
1,5 l/h	10 m.c.a.	95 90 85	53 97 122	73 134 168	91 167 209	108 197 248	120 225 284	146 265 335	180 327 408	238 433 544
2,1 l/h	10 m.c.a.	95 90 85	44 81 102	61 112 140	77 140 176	92 165 208	106 189 237	123 222 279	181 273 344	204 363 454
4,0 l/h	10 m.c.a.	95 90 85	35 63 79	48 88 110	60 110 137	72 129 162	82 148 185	96 174 218	118 214 267	156 283 352

Los valores de las tablas han sido calculados con la ecuación KELLER - KARMELI (1975) - Para un alto nivel de uniformidad de emisión en cada punto de la instalación se aconseja utilizar valores de E.U. Mayores o iguales al 90%

Fabricado por: SIBERLINE MEXICO S.A. de C.V.
MATRIZ: Av. La Noria N° 117 Parque Ind. Querétaro C.P. 76220
Santa Rosa Jaregui, Querétaro, Qro. - Tel.:(442)240.91.65,240.91.66 - siberline@siberline.com.mx
SUCURSAL: Bivd. Jesús Kumate Rodríguez Sur # 5420-46. Parque Industrial El Trébol.
Culiacán, Sinaloa. CP. 80155. - Tel.:(667)760.6376, 760.6377 - culiacan@siberline.com.mx
ALMACEN GENERAL: Av. Benito Juárez No.131 Int.1 Parque Industrial Querétaro, C.P. 76220
Santa Rosa Jáuregui Queretaro, QRO
Tel: 442 240 9403 - 442 240 9166 Fax: Ext. 103

GRUPO SIPLAST: SIPLAST S.p.A. di Carmelo Giuffrè & C. IRRITEC S.r.l., A.I.T. - Advanced Irrigation Technologies